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Determination of number of dedicated OR’s and
supporting pricing mechanisms for emergent
surgeries
JA Paul and L MacDonald�
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Inefficient management of emergent surgeries in hospitals can, in part, be attributed to a lack of rigorous
analysis appropriate to capturing the underlying uncertainties inherent to this process and a pricing
mechanism to ensure its financial viability. We develop a non-preemptive multi-priority queueing model
that optimally manages emergent surgeries and supports the resource allocation decision-making
process. Specifically, we utilize queueing and discrete event simulation to develop empirical models for
determining the required number of emergent operating rooms for a hospital surgical department. We
also present algorithms that estimate the appropriate pricing for patient surgeries differentiated by
priority level given the patient demand and the resources reserved to meet this demand.
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Introduction

As operating costs continue to rise, hospitals continue to

explore additional avenues for enhancing revenues. One

such direction is strategic price modelling, which was

more common in the past before fixed-fee payments

became so prevalent (HFMA, 2004). One area in particular

that could benefit from strategic pricing is the surgical

department, given that it is estimated to account for more

than 40% of a hospital’s total revenues (HFMA, 2003).

The surgical department handles three main types of

surgeries: scheduled, add-on and emergent procedures.

Currently, fees are typically comprised of a fixed charge,

based on the type of surgery, and a variable charge based

on the duration, that is, an hourly rate. However, the emer-

gent and add-on surgeries may have additional overhead

and costs associated with possible disruptions to the

scheduled procedures resulting from their unpredictable

arrival patterns as well as the severity, and hence the timing

of the required surgical procedure. Yet, current practices

involving surgical charges do not differentiate between

surgery types at the operational level. As stated by Edward

B. Carlson, Vice President and CFO at Munson Health-

care, ‘You need some sense of what the relationship of

cost-to-charge is at the procedure level, as opposed to just

an overall ratio’ (HFMA, 2004).

From an operational perspective, the emergent and

add-on surgeries have been handled in one of the two

primary ways. One, hospitals and operating room (OR)

managers create slack in the existing schedule to accom-

modate these surgeries by cancelling (primarily elective)

scheduled cases (Ozkarahan, 2000; Blake et al, 2002). The

second approach involves managing emergent surgeries

separately from scheduled surgeries by reserving rooms

based on the emergent surgery demand. This approach

has been shown to be effective in reducing the high variabi-

lity in OR scheduling as well as improve patient outcomes

(Denton et al, 2007). A recent study utilized simulation and

optimization models to implement this approach to meet

these objectives at the study participating hospital (Persson

and Persson, 2010). Another study on emergent surgery

planning, however, concluded that closing rooms reserved

specifically for emergent surgeries and reserving capacity in

elective ORs is a more cost effective strategy (Wullink et al,

2007). Thus, a pricing mechanism that is different from one

used for scheduled surgeries is necessary to ensure the

economic viability of a system wherein emergent surgeries

are handled separately via reservation of ORs.

In this study, we evaluate and determine the number

of dedicated ORs required, as well as develop a costing

mechanism to ensure long-run economic viability of this

approach, with an ultimate goal of maximizing patient

outcomes. The remainder of the paper is organized as
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follows. We first present a discussion of existing literature

relevant to this research effort and then describe our app-

roach. Next, we present models that help reduce variability

in OR operations and manage emergent surgeries. Speci-

fically, we look at queueing and simulation approaches to

estimate the optimal number of ORs and corresponding

patient waiting time. We also propose pricing mechanisms

that help apportion the total OR cost of operations among

patients based on their priority class. We then demonstrate

the applicability of the models via case studies. Finally, we

present conclusions and directions for future research.

Background

A number of modelling and quantitative approaches have

been brought to bear on various managerial issues within

the health-care sector, including OR management. These

include, but are not limited to staff scheduling, including

size, type and timing issues, process and patient flows, as

well as OR scheduling. The review paper by Guerriero and

Guido (2011) provides a thorough overview of the appli-

cation of operations research to the operating theatre.

Additional details can be found in the review by Cardoen

et al (2010). Thus, in our review below, we focus on OR

management in which the direct or indirect impacts of

urgent or emergent surgeries are considered.

Simulation has been a common approach for studying

the complex OR environment. In one of the earliest papers,

Goldman and Knappenberger (1968) use discrete event

simulation (DES) to determine the optimal number of ORs

subject to uncertain demand. In this paper, the authors

consider direct OR costs as well as those attributed to

patient wait times. Similarly, Pai et al (1997) use simulation

to optimize the number of ORs in a hospital. van Oostrum

et al (2008) also use DES to determine emergency OR

staffing levels for the night shift, given the uncertainty in

both arrivals and surgery duration, with consideration of

patient safety due to the time-sensitive nature of the

procedures. Sier et al (1997) study the surgical scheduling

problem involving a number of hard and soft constraints,

including those imposed by the uncertainty of emergent

procedures. They develop a simulated annealing heuristic

to aid in the decision-making process for this multi-criteria

objective problem. Denton et al (2006) develop a simula-

tion model for a multiple OR surgical suite to provide

decision support for efficient handling of surgeries.

Other quantitative methods have also been applied to

various problems related to the OR theatre. In an early

paper using stochastic dynamic programming, Gerchak

et al (1996) develop a model to schedule elective surgeries

given uncertainties associated with both elective and emer-

gent procedures. Denton et al (2007) develop a stochastic

optimization model and heuristics for computing OR

schedules when faced with uncertainty in surgery durations

and sequencing, while Tucker et al (1999) use queueing

theory to determine the optimal OR staff needed during

the night shift at a Level II trauma centre. Zonderland et al

(2010) study semi-urgent surgeries using queueing techni-

ques to first determine the required number of ORs to

meet an uncertain demand, then analyze the tradeoffs

between accommodating these patients by cancelling

elective surgeries and possible underutilization of OR

capacity. In addition, Lamiri et al (2008) use a column

generation approach to plan utilization of OR resources

when faced with the problem of managing emergent and

elective surgeries together. Stanciu et al (2010) use a unique

approach in which resource allocation techniques typical

of revenue management are used to allocate capacity for

surgeries to maximize expected revenue, including costs

associated with schedule interruptions and overtime.

In addition, surgery classes are categorized by revenues,

not by traditional priority. In Zhang et al (2009), the

authors optimize allocation of OR capacity to specialties,

considering priority emergency surgeries, using a mixed-

integer programming model to reduce costs. Jebali et al

(2006) use a mixed-integer programming approach in their

two-step model for scheduling surgeries. The first step deals

with the assignment of surgeries to ORs after consideration

of the relevant constraints such as availability of an OR,

surgeon, equipment and so on. The second step then

determines the optimal surgery sequence while minimizing

OR overtime.

One gap in the above research is a generic methodology

that evaluates the key parameters for allocation of resou-

rces regardless of hospital size. This is the primary empha-

sis of this research endeavour. In particular, we focus on

the emergent surgery management problem, and determine

the required number of ORs to be reserved based on

a designated service level. In addition, an efficient pricing

mechanism that apportions the cost of the ORs among the

different emergent patient categories to ensure the eco-

nomic viability of this set-up is notably lacking. This forms

the second motivation for this research effort.

Methodology

This study was in part motivated by a regional hospital

with a surgical department that handles about 7000 patient

cases per year within their 11 OR suites. The patients in

the OR were classified in three categories based on how

they were incorporated in the OR schedule: scheduled,

add-on and emergent cases. These three patient types could

be further categorized by surgery type, for example,

general, colon rectal, orthopedic and so on. Block sche-

duling was used to allocate time slots to surgeons based on

historical caseloads, previous utilization rates and their

preferences. However, the addition of emergent surgeries

into the regular schedule were leading to long length of
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stays for patients, frequent and excessive wait times for

surgery, overtime for personnel and so on. All of these

issues were affecting patient satisfaction as well as hospital

revenues. This led the hospital to conduct a study that

looked at efficiency and throughput improvement alter-

natives, as there was a significant underutilization of

ORs in addition to patient dissatisfaction issues. One key

decision that resulted from this analysis, which is also

well supported in the literature (see, eg, Litvak and Long,

2000 and Litvak et al, 2001 and Levtzion-Korach et al,

2010), was to reserve ORs for emergent surgeries. Our goal

in this study is to develop a generic model that would

be applicable to hospitals of varying size in determining the

appropriate number of ORs to reserve for emergent

procedures.

In general, the management of unscheduled or emergent

surgeries in an OR environment is a classic non-preemptive

multi-priority queueing problem. In addition, there is the

added complexity of patients transitioning to a higher

severity/priority class due to prolonged waiting. Thus,

unlike standard priority queues, where the highest priority

clients are served before lower priority clients, in a hospital

the customers are patients whose severity or priority can

change due to unreasonable wait times. This might warrant

providing service to a previously lower priority patient

ahead of a comparatively higher priority patient that has

recently arrived. Given the complexity of the system under

consideration, we opted to utilize simulations to study the

properties of this system and its sensitivity to patient

characteristics including volume, mix, average surgery time

and so on.

We developed a DES model for this purpose as a DES

model has the ability to represent activities in a complex

system, such as an OR, as a network of interdependent and

discrete events. Moreover, DES models can depict events

using the priority-based rules and decision making that

drive actual OR operations. Once built, the DES model

can then be used to study the sensitivity of changes to

inputs on various measures of performance. We obtained

data from the previously described surgery department

as initial inputs for the simulation model. The data pro-

vided by the study hospital included surgery times, OR

downtime, OR setup time, population (arrivals) of patients

belonging to each priority and so on from July 2008

to June 2009. This data were then used to estimate

parameters and probability distributions to incorporate in

the simulation model.

As the model was being developed to study a new

operation, in which the emergent surgeries would be

handled separately, there was no data available from

the participant hospital to validate the simulation direc-

tly. However, as all the key inputs such as surgery time,

patient mix, downtime, OR setup time and so on are based

on real data and real-world inputs, and this setup

is supported by successful real-time practices in other

hospitals as noted from the extant literature (Denton et al,

2007; Levtzion-Korach et al, 2010), we have considerable

confidence in the validity and reliability of the model

outputs. In addition, we performed a power analysis to

determine the number of replications for our simulation

studies (Cohen, 1988). The significance level was set to

0.05, with the power at 0.80 and effect size set equal to

0.3. We assumed a relative error of 2%, and the coefficient

of variation was obtained from pilot runs involving

50 replications. The power analysis indicated the app-

ropriate number of replications to be approximately 100,

and therefore we chose this value for all our subsequent

simulation runs.

We initiated several simulation studies using ProModel

(2010) to further our understanding of the emergency

surgery process, in order to aid in the development of

our models and heuristics. Given arrivals for ‘r’ priorities

as l1, l2, . . . , lr with the highest severity assigned to

Priority 1, then by definition the acceptable wait times

(o) can be ordered as o1oo2o?oor. The patient

priority is continuously updated based on the time they

have already waited when compared with their initial

acceptable wait time (or). As an OR becomes available,

the patient with the lowest remaining wait time is

scheduled for surgery. The classification of patients into

different severity levels or priorities is based on the

maximum allowable time the patients could wait before

receiving care, which we refer to as survivability time.

In the study, participant hospital a five-level system for

prioritizing patients based on wait times was used.

Specifically, the classifications used and acceptable wait

times were: emergent (within 1 h), emergent (within 2 h),

urgent (within 4 h), semi-urgent (8 h) and non-urgent

(within 24 h). This approach is supported in the extant

literature as well. For example, a recent article dealing

with emergent surgery planning showed that a five-level

classification complements the policy of handling emer-

gent surgeries separately (Levtzion-Korach et al, 2010).

Given the above, we selected a five-level classification for

our simulations and subsequent analysis.

Initial simulations were conducted using arrival and

surgery time parameters based on the data provided by

the participant hospital. We assumed the arrivals process

followed a Poisson distribution, which is a common

assumption for queueing systems (see Ross, 2003). In addi-

tion, the hospital data were consistent with the properties

of the Poisson distribution, in that the mean and variance

of the arrivals are approximately the same. The surgery

times, using surgery data provided by the hospital, were

fitted to an Erlang distribution, with a shape parameter

of 3 and scale of 41.4min, for a mean surgery time of

124.2min. Figure 1 displays a histogram of the original

data overlaid with the fitted distribution. Table 1 shows

the patient priorities, arrival rates as well as the maximum

time to treatment allowed for each priority type, with the
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parameters for the default scenario based on the original

hospital data.

To determine the impact of patient mix, that is, the

volume or arrival rates of the individual priorities, as well

as the overall patient arrivals, various scenarios were run

with modified individual and total arrivals. Total patient

volume or arrival rate, denoted as lT, was varied from one-

quarter to triple the default level of 2.77 patients per day at

levels of one-quarter, one-half, double and triple. As well,

different patient volumes by priority within these total

patient volumes were simulated. These included equal

arrival rates for each priority as well as an extreme volume

for an individual priority, with the arrivals of the remaining

priorities taken as equivalent. For this second approach,

each priority in sequence was assigned the highest arrival

rate from the data (eg, the highest default arrival rate was

for Priority 3 at 1.142 patients per day), with the remaining

volume equally distributed over the other priorities. These

scenarios are labelled as Scenarios 1 through 6 in Table 1.

To evaluate the effects of surgery duration on surviva-

bility, we ran two sets of simulations. First, we varied the

average surgery time for each priority individually to

determine the impact of varying the surgery times across

priorities. Specifically, the average surgery time was

increased by 50% for one of the priorities in sequence,

with all other priorities set at an equal though reduced level

to maintain the same overall average surgery time as the

default scenario. All arrivals were taken as equal, with total

patient volume identical to the default level. The parameter

values for these simulations are given in Table 2. In the

Figure 1 Fitted surgery time—Erlang distribution.

Table 1 Volume and survivability time by priority class-base arrival rate scenarios

Priority Survivability
(min)

Default
(Patients/

day)

Scenario 1
(Patients/

day)

Scenario 2
(Patients/

day)

Scenario 3
(Patients/

day)

Scenario 4
(Patients/

day)

Scenario 5
(Patients/

day)

Scenario 6
(Patients/

day)

1 60 0.224 0.551 1.142 0.403 0.403 0.403 0.403
2 120 0.443 0.551 0.403 1.142 0.403 0.403 0.403
3 240 1.142 0.551 0.403 0.403 1.142 0.403 0.403
4 480 0.641 0.551 0.403 0.403 0.403 1.142 0.403
5 1440 0.324 0.551 0.403 0.403 0.403 0.403 1.142

Table 2 Average surgery time scenarios by priority class

Priority Arrivals
(Patients/

day)

Default
surgery time

(min)

Surgery time
P1 high
(min)

Surgery time
P2 high
(min)

Surgery time
P3 high
(min)

Surgery time
P4 high
(min)

Surgery time
P5 high
(min)

1 0.551 124.2 186.3 108.675 108.675 108.675 108.675
2 0.551 124.2 108.675 186.3 108.675 108.675 108.675
3 0.551 124.2 108.675 108.675 186.3 108.675 108.675
4 0.551 124.2 108.675 108.675 108.675 186.3 108.675
5 0.551 124.2 108.675 108.675 108.675 108.675 186.3
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second set of simulations related to surgery time, which

were motivated by the results obtained from the first round

(discussed in detail in the next section), the average surgery

time was reduced by a total of 60min in 10-min increments,

as well as increased by increments of 25% up to three times

the current average. In this second set of simulations, the

surgery time was not varied by priority, that is, the same

average was applied to all priorities. Each of these surgery

times was then simulated across all arrival rates listed

above, as well as the default patient volume. To measure

the impact of the patient arrivals and surgery times, we

determined the percentage of patients of each priority

that exceeded their stated survivability in minutes. For

the initial analysis a single server or OR was considered

available. Subsequent analysis then increased the number

of OR’s to determine the required OR’s to meet specific

operating goals.

Simulation results

The first observation arising from the simulation studies

was the lack of a significant impact of the patient volume

mix by priority. Figure 2 shows the percentage of patients

for each priority that exceeded their survivability times for

each of the scenarios presented in Table 1 using the original

surgery time distribution. On the basis of the figure,

we observed that the general trend was relatively flat

across the different scenarios, thus indicating that priority

volume mix was not significant in evaluating the emergency

OR requirements. ANOVA results comparing the mean

percentage exceeding survivability across the different

scenarios for each priority is presented in Table 3. With

the exception of Priority 5 patients, which could not be

analyzed, all p-values exceeded 0.1, thus we were unable to

conclude there was a difference in the means, indicating

that patient mix was not a critical variable in determining

the percentage exceeding survivability time for a given

priority.

The second key observation arising from the studies

involving surgery time variations was that as long as the

overall weighted average of the surgery times for all patient

priorities was the same, the survivability results across

scenarios did not differ significantly.1 Figure 3 shows the

percentage of patients for each priority that exceeded their

survivability times for each of the scenarios presented in

Table 2 using the original total patient volume. The general

trend was relatively flat across the different scenarios, thus

indicating that average surgery time by priority was not

significant in evaluating the emergency OR system or

requirements.

Given the above results, the problem becomes somewhat

simplified, though still complex, in that it is not necessary

to distinguish different patient mix volumes or average

surgery times by priority, and can determine surgical

OR requirements based on total patient volume and an

overall average surgery time distribution where all priority

classes are taken as the same. It should be noted that

once the required number of ORs have been determined,

we assume that the corresponding number of OR teams are

available to perform the procedures. Before proceeding, we
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Figure 2 Percentage over survivability across total patient
volumes.

Table 3 Welch (ANOVA) test of equality of mean percentage
over survivability

Welch* test statistic df1 df 2 Significance

Priority 1 1.648 6 306.657 0.134
Priority 2 1.634 6 306.829 0.137
Priority 3 1.043 6 306.185 0.397
Priority 4 1.515 6 303.879 0.173
Priority 5w — — — —

*Welch test used as p-values for Levene tests of equal variances were

all o0.000
wCould not be tested as one or more of the groups had 0 variance.
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Figure 3 Percentage over survivability with surgery times
varying by priority.

1The findings might not hold if the surgery distribution did not fit a g-
type distribution (of which the Erlang is a special case), in which the

distribution averages are additive.
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first needed to establish a threshold for the percentage

of patients for all priorities that exceeded their stated

survivability times. For the simulation scenarios studied,

we found that using 5% as a threshold, we were able to

achieve a more than 90% compliance rate for all surgeries

together. We used this as a metric for all our analysis

presented in the subsequent sections as this was found to be

appropriate based on prior literature (Litvak et al, 2001).

We thus estimate the number of ORs required to meet a

5% survivability threshold with total patient volume and

average surgery time as predictor variables. To determine

the optimal number of ORs, for each combination of

arrival rate and surgery times described previously, the

number of OR’s assumed available was increased until the

proportion for all patient priorities met the 5% threshold

at a 95% confidence interval. The rationale for including

the confidence level in the determination of the required

number of ORs results from the understanding that

planning strictly on the basis of average is not always

reliable (Albright et al, 2009). This is illustrated in Figure 4,

where the mean as well as the upper and lower confidence

levels of the percentage of patients exceeding their

respective survivability limits for each priority are given

for a particular scenario. As can be observed, though the

mean for Priority 1 is less than the 5% threshold, the upper

95% confidence level exceeds the required limit. An ordinal

probit regression was used to determine the functional

relationship between the dependent variable, the number of

ORs required, and the independent variables total patient

volume and average surgery time. The parameter values for

the ordered probit model were estimated using STATA

11.0, with all coefficient p-values o0.05. The resulting

model is given below.

PðOR ¼ 1Þ ¼ F ð13:181� ½3:195x1 þ 0:0809x2�Þ ð1Þ

PðOR ¼ 2Þ ¼ F ð33:878� ½3:195x1 þ 0:0809x2�Þ
� F ð13:181� ½3:195x1 þ 0:0809x2�Þ ð2Þ

PðOR ¼ 3Þ ¼ F ð42:251� ½3:195x1 þ 0:0809x2�Þ
� F ð33:878� ½3:195x1 þ 0:0809x2�Þ ð3Þ

PðOR ¼ 4Þ ¼ F ð49:797� ½3:195x1 þ 0:0809x2�Þ
� F ð42:251� ½3:195x1 þ 0:0809x2�Þ ð4Þ

PðOR ¼ 5Þ ¼ F ð1� ½3:195x1 þ 0:0809x2�Þ
� F ð49:797� ½3:195x1 þ 0:0809x2�Þ ð5Þ

where x1¼ total daily patient volume and x2¼ average

surgery time (min) and f( � ) is the standard normal

distribution.

Equations (1)–(5) estimate the cumulative probability

that the required number of ORs is equal to a specific

value, in our Case 1 through 5. The probability of each

discrete outcome (number of ORs) is calculated based

on the standard normal probability distribution using the

value of the derived expression for the independent vari-

ables total patient volume and average surgery time. One

interpretation is that the number of required ORs is equal

to the standard normal probability of the magnitude of the

derived expression based on the total patient volume and

average surgery time. For example, applying the equations

using the original hospital data, where x1¼ 2.77 patients

per day and x2¼ 124.2min, we find the number of required

ORs is two with a probability approaching 1, while the

probabilities for all the other possibilities are approxi-

mately 0. As expected, the lower the numerical value of this

expression, as a result of either low average surgery times

or patient arrivals or both, the higher the likelihood that

the required number of ORs is low.

Once the required number of ORs was determined based

on the equations above, we then estimated the relationship

between the proportion of patients in each priority that

waited more than their survivability time and a set of

independent variables. We used the GLM option with link

(logit) and the binomial distribution for this analysis as the

dependent variable was a proportion. We found that

for the optimal number of ORs, average surgery time and

total patient volume were significant in influencing the

probability of a patient exceeding their survivability time.

The results are provided below for all the five patient

priorities, with all coefficients found to be statistically

significant at the 0.05 level.

p1 ¼
e�4:091þ0:285x1þ0:007x2�1:046x3

1þ e�4:091þ0:285x1þ0:007x2�1:046x3
ð6Þ

p2 ¼
e�5:256þ0:226x1þ0:009x2�1:0328x3

1þ e�5:256þ0:226x1þ0:009x2�1:0328x3
ð7Þ

p3 ¼
e�7:692þ0:256x1þ0:0140x2�1:120x3

1þ e�7:692þ0:256x1þ0:0140x2�1:120x3
ð8Þ
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Figure 4 The 95% confidence interval for percentage over
survivability (lT¼ 0.69; E(B)¼ 124.2min).
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p4 ¼
e�14:036þ0:933x1þ0:0316x2�2:284x3

1þ e�14:036þ0:933x1þ0:0316x2�2:284x3
ð9Þ

p5 ¼ 0

where pi¼ proportion of patients belonging to priority ‘i ’

that waited more than their survivability time when the

number of OR is optimal, with x3¼ optimal number of

ORs, and x1¼ total daily patient volume and x2¼ average

surgery time (min) as given previously.

To demonstrate the validity of the parametric models,

in Table 4 we present a comparison of the results on sur-

vivability data at the hospital considered in this study

(default problem scenario) when the number of operational

ORs was equal to two, the optimal value established using

the parametric models given in Equations (1)–(5). These

results show that the developed parametric models are

quite good at predicting the proportion of patients for each

priority exceeding their respective survivability limits as

compared with the simulation results, with the parametric

results all within the 95% confidence interval of the simula-

ted percentages. Similar equations can be estimated for

other threshold values as determined to be appropriate

to the hospital by the OR manager. For example, the

hospital may be willing to accept a 10% threshold as

opposed to the 5% used above. Regardless of the threshold

used, the equations should provide a robust estimate of

the number of required OR’s as well as determine the

proportion of patients exceeding the OR department’s

service goals.

Transform development and application

An alternative to the models developed above is the use of

transforms and the resulting mathematical moments (eg,

mean and variance) to evaluate the emergent surgery

queueing system. An obvious advantage of this approach is

that analytical results are easier to generalize than those

from simulation models, including being readily extended

to any number of priority systems. However, it is limited to

settings where a single OR is optimal or is otherwise

dedicated to emergent surgeries due to the complexity of

the equations.

The most relevant closed form expressions available in

the queueing literature for determining system properties

involve Laplace–Steiltjes (L–S) transforms. However, even

for an M/G/1 queue, that is, single server with Poisson

arrivals and general service distribution, only expressions

for expected wait time are available for multi-priority

queues. We extend the existing results for M/G/1 queues to

develop approximations to L–S transforms to aid in the

determination of general properties of multi-priority

queues as studied in this paper. The resulting transform

for the wait time for priority patient ‘i ’ is:

eWiðsÞ ¼
1�

Pr
j¼1 rj

� �2
ð1�ðr1 þ r2 þ � � �riÞÞð1� ðr1 þ r2 þ � � � ri�1ÞÞ 1�

Pr
j¼1 rj ~RðsÞ

� �
ð10Þ

where

i patient priority class, i¼ 1 to r

ri server utilization due to Priority i patient¼ liE(B)
li patient arrival rate for patients belonging to

Priority i

E(Bi) expected service (surgery) time for Priority i
~RsðsÞ residual service time transform¼ð1� ~BiðsÞÞ=

sEðBiÞ for Priority i
~BiðsÞ service time (surgery time) transform for a Priority

i patient¼ (m/(mþ s))k for the Erlang distribution

with scale parameter k

E(Li
q
) the expected number of Priority i patients in the

queuefLq
i ðsÞ transform for number waiting in queue that

belong to priority class i ¼ li ~WiðsÞ

Using the general principles of L–S transforms, the

individual moments for wait-time can be derived. Thus,

using the wait-time transform in (10), we can find the nth

moment, E(Wi
n ), as: ~Wn

i ð0Þ ¼ ð�1Þ
n � EðWn

i Þ , where ~Wn
i

is the nth derivative with respect to ‘s’ for the above wait-

time transform. For example, the mean or expectation of

wait-time, E(Wi), is derived by taking the first derivative of
~WiðsÞ , then setting s¼ 0, resulting in:

EðWiÞ ¼
Pr

j¼1 rj � EðRjÞ
ð1� ðr1 þ r2 þ � � � riÞÞð1� ðr1 þ r2 þ � � �ri�1ÞÞ

ð11Þ

with E(Rj)¼ (E(Bj
2)/2 �E(Bj)) and the first and second

moments of the surgery time distribution based on the

Erlang distribution with a scale parameter of three as

described previously. Health care managers can use these

transforms and resulting expectations in OR planning

for all situations in which a single OR is being utilized.

Table 4 Comparison of percentage of patients exceeding
survivability time (default scenario)

Parameters Number of ORs=2=Optimal

lT
(Patients/

day)

E(B)
(min)

Parametric
model (%)

Simulation
results (%)

Patient priority 1 2.77 124.2 1.07 0.99
2 2.77 124.2 0.38 0.25
3 2.77 124.2 0.06 0.00
4 2.77 124.2 0.00 0.00
5 2.77 124.2 0.00 0.00
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We confirm the validity of these transforms by comparing

the average or expected wait time and standard deviation

in minutes using the transforms above with those of the

simulation results for various arrival and surgery time

conditions. These results are presented in Tables 5 and 6,

respectively, with both the average and standard deviations

generally similar to those generated by the simulations,

with all analytic expected values within the 95% confidence

interval of the simulation results.

In addition to estimating key operational parameters

such as mean wait time, the transforms can be used to

estimate the probability or proportion of patients who wait

longer than their respective survivability times P(Wi4oi).

The most direct approach would involve inverting the wait-

time transform to determine the associated probability

distribution. Unfortunately, the above transform cannot be

inverted directly. However, we may approximate the wait-

time distribution by decomposing the wait-time compo-

nents. We specifically focus on Priority 1 patients, as from

the parametric Equations (6)–(9), if these patients do not

exceed their survivability time, the other patients are also

within their respective limits. For Priority 1 patients, the

wait time is composed of three components; the proportion

of time the system is free, the residual service time of any

patient currently in service, and the service time for any

Priority 1 patients in the queue. The first component is

straightforward, and is given by 1�
P

j¼ 1
r rj. The residual

service distribution, along with the probability that a

patient is in service,
P

j¼ 1
r rj, gives the second component.

For an Erlang distribution with shape parameter ‘k’,

Table 5 Comparison of mean wait times in minutes from simulations and transforms by priority

Parameters Priority 1 Priority 2 Priority 3 Priority 4 Priority 5

lT*
(patients/
day)

E(B)
(min)

Simulation
Average

Trans
E(W1)

Simulation
Average

Trans
E(W2)

Simulation
Average

Trans
E(W3)

Simulation
Average

Trans
E(W4)

Simulation
Average

Trans
E(W5)

0.69 124.2 5.61 4.98 4.46 5.05 7.77 5.23 5.76 5.44 6.36 5.56
0.69 124.2 6.15 4.98 6.07 5.10 5.63 5.22 5.36 5.35 5.60 5.49
0.69 124.2 5.27 5.04 7.09 5.22 4.26 5.31 3.02 5.41 3.96 5.51
0.69 124.2 4.85 4.96 5.74 5.13 4.46 5.31 6.80 5.41 9.10 5.51
0.69 124.2 5.02 4.96 4.38 5.05 5.08 5.22 6.00 5.41 6.94 5.51
0.69 124.2 5.75 4.96 5.22 5.05 8.66 5.14 5.58 5.32 5.46 5.51
0.69 124.2 5.74 4.96 6.32 5.05 6.50 5.14 5.56 5.23 7.16 5.42
0.69 64.2 1.42 1.33 2.89 1.34 2.14 1.36 3.52 1.39 1.74 1.4
0.69 94.2 2.88 2.86 2.39 2.89 4.13 2.97 4.73 3.06 4.87 3.11
0.69 114.2 3.35 4.2 7.82 4.26 4.66 4.4 5.69 4.56 5.68 4.66
1.39 64.2 4.62 2.66 3.26 2.7 4.36 2.8 3.94 2.92 4.46 2.98
2.77 64.2 6.75 5.35 7.61 5.51 8.50 5.93 8.77 6.46 8.61 6.78

*Total patient arrival rate. The proportion for priority was taken as identical to the default arrival rates (see Table 1).

Table 6 Comparison of standard deviations of wait times (min) from simulations and transforms by priority

Parameters Priority 1 Priority 2 Priority 3 Priority 4 Priority 5

lT*
(Patients/
day)

E(B)
(min)

Simulation
std dev

Trans
s(W1)

Simulation
std dev

Trans
s(W2)

Simulation
std dev

Trans
s(W3)

Simulation
std dev

Trans
s(W4)

Simulation
std dev

Trans
s(W5)

0.69 124.2 27.6 26.7 30.4 26.9 38.0 27.4 27.8 27.9 33.4 28.2
0.69 124.2 28.0 26.7 26.1 27.0 25.2 27.4 28.1 27.7 25.3 28.0
0.69 124.2 24.0 26.9 32.7 27.3 18.9 27.6 28.0 27.8 24.7 28.1
0.69 124.2 24.0 26.7 25.6 27.1 28.2 27.6 28.2 27.8 40.4 28.1
0.69 124.2 29.4 26.7 23.9 26.9 24.4 27.4 31.1 27.8 32.0 28.1
0.69 124.2 22.5 26.7 24.3 26.9 28.1 27.1 24.7 27.6 26.0 28.1
0.69 124.2 29.2 26.7 27.9 26.9 31.0 27.1 28.0 27.4 35.0 27.8
0.69 64.2 4.9 9.8 13.6 9.9 9.0 9.9 13.4 10.0 10.4 10.1
0.69 94.2 18.0 17.6 13.9 17.6 17.5 17.9 20.2 18.1 16.8 18.3
0.69 114.2 18.9 23.5 26.9 23.7 21.9 24.0 28.0 24.5 26.4 24.7
1.39 64.2 16.6 14.1 12.9 14.2 16.2 14.4 17.0 14.7 17.9 14.9
2.77 64.2 18.9 20.4 22.0 20.7 24.8 21.4 27.4 22.3 26.9 22.8

*Total patient arrival rate. The proportion for priority was taken as identical to the default arrival rates (see Table 1).
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the probability distribution resulting from inverting the

transform is:

fRðtÞ ¼
1

k
e�mt

Xk�1
n¼0

mk�nt k�n�1

ðk� n� 1Þ! �
1

k

Xk
K¼1

Ek ð12Þ

Thus, the residual distribution is the average of the sum

of Erlang distributions with shape parameters from 1 to k.

Therefore, the resulting cumulative distribution function

for the residual, denoted as FR(t), is:

FRðtÞ ¼ PðRptÞ ¼ 1

k

Xk
K¼1

FKðtÞ
 !

ð13Þ

where FK(t) represents the cumulative Erlang distribution

with shape ‘k’. Using just the first two components as an

approximation results in:

PðW14o1Þ ¼ 1� PðW1po1Þ

¼ 1� 1�
Xr
j¼1

rj

 !
þ
Xr
j¼1

rjFRðo1Þ
" #

ð14Þ

Direct determination of the third component is not

possible, but under low arrival/utilization rates, would

likely be modest in that most of the time the server (OR) is

not facing lengthy queues in order to meet reasonable

thresholds for patients exceeding their respective survi-

vability times. Thus, there is a high probability that there

would be no Priority 1 patients in the queue, with the

corresponding 0 contribution to the wait time for an arri-

ving patient. Table 7 shows a comparison of the estimated

probability of exceeding the wait time obtained from the

simulations and the approximate cumulative distribu-

tion. As would be expected, the calculations based on the

transforms perform better with lower overall arrival and

utilization rates, as the third component is likely to be

less significant under those scenarios. Overall, the results

compare quite well with those obtained from the simula-

tion, and for higher utilizations indicate where excessive

risk or the probability of exceeding survivability limits

occurs.

It should be noted that the above transforms and

resulting expected wait times are only an approximation

as they do not account for the priority transition that can

occur in an OR setting. For the highest priority customers,

the expected wait time will always be greater with than

without transitions in the queue, while for the lowest

priority patients ‘r’, wait times will be strictly lower with

transition. However, the impact on the wait times for

intermediate priorities is dependent on the physical charac-

teristics of the system, such as the individual arrival rates

and transition probabilities. Details of this analysis are

presented in Appendix A. Numerical estimation of these

transition impacts have indicated that these effects are rela-

tively small (typically o1%) and therefore, the wait time

approximation is representative of the system of interest.

Techniques for apportioning cost

Having developed the relationship between the required

number of ORs and the significant variables influencing

this decision, we present techniques for equitably appor-

tioning the costs to ensure the economic sustainability of

dedicated ORs for emergent surgery. We distinguish two

cases; the first is where a single OR is sufficient to meet the

required threshold for all patient priorities, and the second

deals with situations requiring multiple ORs.

The need for a pricing mechanism is largely driven by the

requirement for an equitable as well as defensible method

of allocating costs across the different patients/priorities.

As discussed in the introduction, patient outcomes and

satisfaction can be improved by separating emergent

surgeries by dedicating OR facilities. This is likely in part

due to minimizing the disruptions in surgery schedules

caused by emergent surgeries. However, it has also been

found that dedicated facilities may not be the most cost-

effective. Therefore, to justify maintaining such facilities,

and the patient benefits that arise, we need to effectively

and fairly allocate the costs. This in turn requires a change

from the standard fixed/variable cost structure currently

applied to these surgeries. When considering the allocation

of costs, it would seem obvious that, to a large extent,

higher priorities drive the need for dedicated facilities. That

is, lower priorities, as defined by their survivability or

acceptable wait-times, would cause less disruption in the

overall surgery schedule given the ability to delay these

surgeries. This would in turn provide an argument or

justification for allocating a larger proportion of the costs

to the higher priority patients.

Table 7 Comparison of simulations and transforms for
proportion exceeding survivability

Parameters P(W14o1)

l1
(Patients/
day)

lT
(Patients/

day)

E(B)
(min)

Simulation Trans

0.056 0.69 124.2 0.031 0.032
0.224 2.77 64.2 0.038 0.031
0.112 1.39 124.2 0.074 0.065
0.224* 2.77 124.2 0.134 0.13
0.448 5.55 124.2 0.341 0.260
0.112 1.39 186.3 0.125 0.123
0.224 2.77 186.3 0.294 0.246
0.112 1.39 248.4 0.180 0.182
0.224 2.77 248.4 0.403 0.36

*Default scenario.
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Pricing for a single OR

For a single OR, an approach based on the transforms and

expected wait times discussed above can be used to

apportion the costs among the different priorities. The

rationale is based on the fact that those that wait the least

derive a larger benefit from the dedicated OR facilities, and

this can therefore be used to apportion costs. We first

define Pi as the price charged for surgery for a patient

belonging to priority ‘i ’ and Ci the proportion of the total

surgery costs allocated to these patients. Then, the

expectations of wait time can be used as follows:

Ci ¼
CT � Ri � liPr
i¼1

Ri � li
and Pi ¼

CT � RiPr
i¼1

Ri � li
¼ Ci

li
ð15Þ

where

Pi price charged for surgery for a patient belonging to

Priority i,

Ci proportion of total costs charged to Priority i,

CT CfþCV¼ total cost of operating the OR, with

Cf fixed cost and Cv¼ variable cost,

Ri ¼ 1� EðWiÞPr
i¼1 EðWiÞ

ð16Þ

lI average daily OR patient arrivals for Priority i.

Here, Ri expresses the ratio of the expected wait times

for each priority, with R14R24?4Rr. The ratio of

expected wait time is then applied in Equation (15) to

allocate the total fixed and variable costs (CT) with

maintaining the emergent surgery OR for each priority

(Ci). Then, based on arrival rates, the price per patient in

each priority (Pi) is determined. This ensures that the

total costs are recovered and are equitably distributed

based on priority. The rationale for this pricing policy

is based on the argument that patients that wait longer

on average (ie, lower priorities) should get charged less,

as the primary reason for the longer wait times is due

to the higher priority patients. Further, as the discre-

pancy in wait times diminish, given sufficient available

capacity, the price charged per patient across priorities

converges to the same rate. Thus, any difference in

pricing across priorities decreases, going to 0, as the

advantage to higher priorities based on expected wait

time diminishes.

Pricing for multiple ORs

When the optimal number of ORs is higher than one, the

approach presented above could lead to an unfair

allocation of costs among patients of different severity.

For instance, consider a scenario in which the lowest

severity patients are already below the 5% threshold even

when the number of ORs is less than optimal. For example,

at the study participating hospital, we found that optimal

number of ORs was two, but the percentage of patients

belonging to Priority 5 was below the 5% threshold even

with a single OR. Therefore, the cost of the second OR

should be allocated to those driving the need for it, in this

case, patients belonging to Priorities 1 through 4. One

method of accomplishing a fair allocation of costs in this

situation is to compare the proportion of patients for

each priority whose wait time exceeded their survivability

with a single OR, or when the system has a stable utili-

zation (discussed below), with that when the number of

ORs is optimal. For example, Table 7 shows the percentage

of patients for each priority that waited more than their

respective survivability time at the arrival rate and surgery

time of the participating hospital with a single OR as well

as when the number of ORs was optimal, that is, where

all percentages were below the 5% threshold. The net

change is then used to allocate costs as described in detail

below.

Before implementation, a second consideration must be

taken into account, that of system stability. When the

utilization exceeds or is near saturation (ie, 100%), the

system performance metrics are not reliable. Figure 5

shows the percentage of exceeding survivability for each

priority for different ORs available at a total patient

volume of 8.32 arrivals per day and an average surgery

time of 376.2min. For utilization exceeding saturation, all

priorities approach 100% exceeding their survivability

time. Therefore, for apportioning costs, we compare

improvement achieved when OR¼optimal with OR¼ 1

or closest stable system for the patient mix and total

volume under consideration.

The functional expressions obtained for the percen-

tage of patients waiting beyond their survivability time

when the number of ORs¼ 1 (based on simulation

scenarios that had OR¼ 1 that resulted in a stable

system) are as follows, with all factors were significant

at the 0.05 level. In addition, we also present a com-
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parison of the predicted values to those generated by the

simulations in Table 8.

p11 ¼
e�4:378þ0:435x1þ0:009x2

1þ e�4:378þ0:435x1þ0:009x2
ð17Þ

p12 ¼
e�5:514þ0:457x1þ0:012x2

1þ e�5:514þ0:457x1þ0:012x2
ð18Þ

p13 ¼
e�7:431þ0:577x1þ0:0168x2

1þ e�7:431þ0:577x1þ0:0168x2
ð19Þ

p14 ¼
e�9:696þ0:752x1þ0:020x2

1þ e�9:696þ0:752x1þ0:020x2
ð20Þ

p15 ¼
e�14:059þ1:082x1þ0:027x2

1þ e�14:059þ1:082x1þ0:027x2
ð21Þ

where

pi
1 proportion of patients of Priority ‘i ’ that weird more

than their survivability time when OR¼ 1.

Taking all the above factors into account, we propose

the algorithm provided in Appendix B. It is important to

note, as above for a single OR, that the prices determined

by the cost apportioning algorithm would result in a

scenario where the cost and revenue break even. The

hospital can modify this algorithm easily to accommodate

their financial goals.

We applied the algorithm to determine the price to be

charged for each priority class at the study participating

hospital. We used the data on costs provided to us by the

hospital and simulation results for optimal number of ORs

of two and percentage over survivability as needed in the

algorithm for this purpose. On the basis of data provided

by the hospital, the total daily fixed cost for operating two

ORs was US$52 854.99 and total daily variable cost was

$24 614.22. This fixed cost also includes the personnel cost

when reserving a certain number of ORs. Thus, the total

cost of operations was $77 469.21. After application of the

algorithm, the prices to be charged per priority were

determined, with the results presented in Table 9. As can be

observed from the table, the highest cost is apportioned to

the highest priority, which is intuitively correct as they are

most directly responsible for driving the requirement for

additional ORs.

Conclusions

In this study, we developed models for determining the

optimal number of ORs that need to be reserved for

emergent surgeries to meet specified threshold service

levels. Specifically, we developed generic expressions that

can be applied at hospitals regardless of size. We also

developed transforms that could be used for problem sce-

narios wherein the number of ORs is equal to one. In addi-

tion, we developed pricing rules and algorithms required to

maintain dedicated emergent ORs and to fairly apportion

costs among the priority classes for resources reserved

based on these models. We demonstrated the applicability

of the algorithm via a case study on the data provided by

the study participating hospital. The pricing mechanism

was important for ensuring the financial viability of results

proposed by our simulation and queueing models.

In future extensions of this research effort, we plan to

study the sensitivity of various apportioning techniques to

different problem settings. In the current study, due to data

limitations, we assumed that all surgeries followed the

same distribution. This might not hold true for all

hospitals. This forms one of the motivations for future

studies. We also aim to look at the sensitivity of the OR

planning policies to different classification systems dis-

cussed in the healthcare literature in addition the five-level

system used in this research endeavour.
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planning and scheduling: A literature review. European Journal
of Operational Research 201(3): 921–932.

Cohen J (1988). Statistical Power Analysis for the Behavioral
Sciences. Lawrence Erlbaum Associates: Hillsdale, NJ.

Denton B, Rahman AS, Nelson H and Bailey AC (2006).
Simulation of a multiple operating room surgical suite. In:
Perrone LF, Wieland FP, Liu J, Lawson BG, Nicol DM and
Fujimoto RM (eds). Proceedings of the 2006 Winter Simulation
Conference, Monterey, pp 414–424.

Denton B, Viapiano J and Vogl A (2007). Optimization of surgery
sequencing and scheduling decisions under uncertainty. Health
Care Management Science 10(1): 13–24.

Gerchak Y, Gupta D and Henig M (1996). Reservation planning
for elective surgery under uncertain demand for emergency
surgery. Management Science 42(3): 321–334.

Goldman J and Knappenberger H (1968). How to determine the
optimum number of operating rooms. Modern Hospital 111(3):
114–116.

Guerriero F and Guido R (2011). Operational research in the
management of the operating theatre: A survey. Health Care
Management Science 14(1): 89–114.

HFMA (2003). Achieving operating room efficiency through
process integration. Health Care Financial Management 57(3):
S1–S7.

HFMA (2004). Strategic price setting: ensuring your financial
viability through price modeling. Health Care Financial Manage-
ment 58(7): 1–7.

Jebali A, Hadj Alouane AB and Ladet P (2006). Operating rooms
scheduling. International Journal of Production Economics
99(1–2): 52–62.

Lamiri ML, Xie D and Zhang S (2008). Column generation
approach to operating theater planning with elective and
emergency patients. IIE Transactions 40(9): 838–852.

Levtzion-Korach O, Murphy KG, Madden S and Dempsey C
(2010). For urgent and emergent cases, which one goes to the OR
first? OR Manager 26(7): 1,11–13.

Litvak E and Long MC (2000). Cost and quality under managed
care: Irreconcilable differences? American Journal of Managed
Care 6(3): 305–312.

Litvak E, Long MC, Cooper AB and McManus ML (2001).
Emergency department diversion: causes and solutions. Aca-
demic Emergency Medicine 8(11): 1108–1110.

Ozkarahan I (2000). Allocation of surgeries to operating rooms
by goal programming. Journal of Medical Systems 24(6):
339–378.

Pai J-Y, Petry F and Fos P (1997). Employing simulation to
optimize the number of operating rooms in hospitals. Technical
Report. In: Proceedings of the Medical Sciences Simulation
Conference. The Society for Computer Simulation International
(SCS): Phoenix, pp 36–42.

Persson MJ and Persson JA (2010). Analysing management policies
for operating room planning using simulation. Health Care
Management Science 13(2): 182–191.

ProModel (2010). Software website, http://www.promodel.com,
accessed May 2010.

Sier D, Tobin P and McGurk C (1997). Scheduling surgical pro-
cedures. Journal of the Operational Research Society 48(9): 884–891.

Stanciu A, Vargas L and May J (2010). A revenue management
approach for managing operating room capacity. In: Johansson B,
Jain S, Montoya-Torres J, Hugan J, and Yücesan E (eds). Pro-
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Appendix A

Effect of priority transition

For highest priority customers, the expected wait time

without transitions is given as:

E W1ð Þ ¼ E L
q
1

� �
� E Bð Þ þ

Xr
j¼1

rj � E Rð Þ

¼ l1 � E Bð Þ � EðW1Þ þ
Xr
j¼1

rj � EðRÞ

that is, the number of Priority 1 patients in the queue and

the residual time for patients in service. With transition,

Priority 1 would also have to wait for all the lower priority

classes that have already waited longer than the difference

in survivability time between the priorities, given asPr
j¼2 lj � EðW1Þ � EðBÞ � Pj;1 , where Pm, n¼P(wait time

priority4omon), that is, the probability that priority ‘m’

has waited longer than the difference in wait time of

priority ‘n’, where m4n which is strictly positive, thus the

expected wait time for Priority 1 will be higher.

For priorities >1 without transition, we can decompose

the expected wait time into two components: the amount of

residual service time of a patient currently in service as well

as all patients with the same or higher priority in the queue

upon arrival. The second is all the higher priority patients

arriving during the patients waiting time:

E Wið Þ ¼
Xi
j¼1

E L
q
j

� �
� E Bð Þ þ

Xr
j¼1

rj � E Rð Þ

þ
Xi�1
j¼1

lj � E Bð Þ � E Wið Þ; i41

Two additional terms account for the possibility of

transition of priority resulting from excessive wait time.

The first concerns the presence of lower priority patients

that have waited longer than the difference between the

survivability times. The second addresses the fact that

arriving higher priority patients will only take priority for

those priority ‘i’ patients that have not waited longer than

the difference in survivability times. Adding these to the

above equation results in

E Wið Þ ¼
Xi
j¼1

E L
q
j

� �
� E Bð Þ þ

Xr
j¼iþ1

lj � EðWiÞ � E Bð Þ � Pj;i

þ
Xr
j¼1

rj � E Rð Þ þ
Xi�1
j¼1

lj � E Bð Þ � EðWiÞ � ð1� Pi;jÞ

The second term increases the expected wait time, while

the addition of (1�Pi, j) to the last term decreases the

expected wait time, with the net effect dependent upon

system dynamics. The only exception is for the lowest

priority, as the second term is zero given that there are no

lower priority patients. Thus, the lowest priority will

always see a decrease in their expected wait time.

Appendix B
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Table B1 Pseudocode for cost apportioning algorithm

Cost Apportioning Algorithm

Input:

pi
opt – {set storing values of proportion of patients of
priority ‘i’ waiting more than their survivability time when
number of ORs is optimal}
pi
base – {set storing values of proportion of patients of
priority ‘i ’ waiting more than their survivability time when
number of ORs=1 or for the closest stable system}
CT – {total cost of ORs, including fixed and variable costs}
lT – {total patient arrivals or volume per day}
ORopt={optimal number of ORs}

Output:

P(i) – {Price charged for patient surgery for priority ‘i ’ }

Process:

1. if ORopt=1 then
2. P(i)=Apply rules provided in (10)
3. else

4. For patient severity i=1 to r
5. Z(i)=pi

base�piopt
6. count=0
7. For patient severity i=1 to r
8. if Z(i)=0 then
9. C(i)=CT/(lT *ORopt)
10. count=countþ 1
11. else

12. CðiÞ ¼ CT

lT �ORopt
1þ ORopt � 1

� �
1þ count � Z ið ÞP

i
Z ið Þ

� �� 	
13. end if

14. Ci
0=0

15. For patient severity i=1 to r
16. Ci

0=Ci
0 þCi � li

17. For patient severity i=1 to r
18. P(i)=((C(i)*CT)/Ci

0)
19. end if
20. return P
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